The number of employees of Kings County, NY was 23,166 for fire fighting in 2015.

Occupations

Above charts are based on data from the U.S. Census American Community Survey | ODN Dataset | API - Notes:

1. ODN datasets and APIs are subject to change and may differ in format from the original source data in order to provide a user-friendly experience on this site.

2. To build your own apps using this data, see the ODN Dataset and API links.

3. If you use this derived data in an app, we ask that you provide a link somewhere in your applications to the Open Data Network with a citation that states: "Data for this application was provided by the Open Data Network" where "Open Data Network" links to http://opendatanetwork.com. Where an application has a region specific module, we ask that you add an additional line that states: "Data about REGIONX was provided by the Open Data Network." where REGIONX is an HREF with a name for a geographical region like "Seattle, WA" and the link points to this page URL, e.g. http://opendatanetwork.com/region/1600000US5363000/Seattle_WA

Jobs and Occupations Datasets Involving Kings County, NY

  • API

    Quarterly Census of Employment and Wages Annual Data: Beginning 2000

    data.ny.gov | Last Updated 2019-08-23T22:10:58.000Z

    The Quarterly Census of Employment and Wages (QCEW) program (also known as ES-202) collects employment and wage data from employers covered by New York State's Unemployment Insurance (UI) Law. This program is a cooperative program with the U.S. Bureau of Labor Statistics. QCEW data encompass approximately 97 percent of New York's nonfarm employment, providing a virtual census of employees and their wages as well as the most complete universe of employment and wage data, by industry, at the State, regional and county levels. "Covered" employment refers broadly to both private-sector employees as well as state, county, and municipal government employees insured under the New York State Unemployment Insurance (UI) Act. Federal employees are insured under separate laws, but are considered covered for the purposes of the program. Employee categories not covered by UI include some agricultural workers, railroad workers, private household workers, student workers, the self-employed, and unpaid family workers. QCEW data are similar to monthly Current Employment Statistics (CES) data in that they reflect jobs by place of work; therefore, if a person holds two jobs, he or she is counted twice. However, since the QCEW program, by definition, only measures employment covered by unemployment insurance laws, its totals will not be the same as CES employment totals due to the employee categories excluded by UI.

  • API

    Current Employment Statistics: Beginning 1990

    data.ny.gov | Last Updated 2019-09-20T22:16:01.000Z

    Current Employment by Industry (CES) data reflect jobs by "place of work." It does not include the self-employed, unpaid family workers, and private household employees. Jobs located in the county or the metropolitan area that pay wages and salaries are counted although workers may live outside the area. Jobs are counted regardless of the number of hours worked. Individuals who hold more than one job (i.e. multiple job holders) may be counted more than once. The employment figure is an estimate of the number of jobs in the area (regardless of the place of residence of the workers) rather than a count of jobs held by the residents of the area.

  • API

    Occupational Employment Statistics

    data.ny.gov | Last Updated 2019-07-15T15:38:22.000Z

    The Occupational Employment Statistics (OES) survey is a semiannual mail survey of employers that measures occupational employment and occupational wage rates for wage and salary workers in nonfarm establishments, by industry. OES estimates are constructed from a sample of about 51,000 establishments. Each year, forms are mailed to two semiannual panels of approximately 8,500 sampled establishments, one panel in May and the other in November.

  • API

    Quarterly Census of Employment and Wages Quarterly Data: Beginning 2000

    data.ny.gov | Last Updated 2019-08-23T22:28:16.000Z

    The Quarterly Census of Employment and Wages (QCEW) program (also known as ES-202) collects employment and wage data from employers covered by New York State's Unemployment Insurance (UI) Law. This program is a cooperative program with the U.S. Bureau of Labor Statistics. QCEW data encompass approximately 97 percent of New York's nonfarm employment, providing a virtual census of employees and their wages as well as the most complete universe of employment and wage data, by industry, at the State, regional and county levels. "Covered" employment refers broadly to both private-sector employees as well as state, county, and municipal government employees insured under the New York State Unemployment Insurance (UI) Act. Federal employees are insured under separate laws, but are considered covered for the purposes of the program. Employee categories not covered by UI include some agricultural workers, railroad workers, private household workers, student workers, the self-employed, and unpaid family workers. QCEW data are similar to monthly Current Employment Statistics (CES) data in that they reflect jobs by place of work; therefore, if a person holds two jobs, he or she is counted twice. However, since the QCEW program, by definition, only measures employment covered by unemployment insurance laws, its totals will not be the same as CES employment totals due to the employee categories excluded by UI.

  • API

    Quarterly Census of Employment and Wages (QCEW) Historical Annual Data: 1975 - 2000

    data.ny.gov | Last Updated 2019-06-10T18:02:35.000Z

    The Quarterly Census of Employment and Wages (QCEW) program (also known as ES-202) collects employment and wage data from employers covered by New York State's Unemployment Insurance (UI) Law. This program is a cooperative program with the U.S. Bureau of Labor Statistics. QCEW data encompass approximately 97 percent of New York's nonfarm employment, providing a virtual census of employees and their wages as well as the most complete universe of employment and wage data, by industry, at the State, regional and county levels. "Covered" employment refers broadly to both private-sector employees as well as state, county, and municipal government employees insured under the New York State Unemployment Insurance (UI) Act. Federal employees are insured under separate laws, but are considered covered for the purposes of the program. Employee categories not covered by UI include some agricultural workers, railroad workers, private household workers, student workers, the self-employed, and unpaid family workers. QCEW data are similar to monthly Current Employment Statistics (CES) data in that they reflect jobs by place of work; therefore, if a person holds two jobs, he or she is counted twice. However, since the QCEW program, by definition, only measures employment covered by unemployment insurance laws, its totals will not be the same as CES employment totals due to the employee categories excluded by UI. Industry level data from 1975 to 2000 is reflective of the Standard Industrial Classification (SIC) codes.

  • API

    New York State Commission for the Blind (NYSCB) Comprehensive Service Contractors

    data.ny.gov | Last Updated 2019-06-10T18:03:11.000Z

    This provides information on the location, contact persons, services provided and capacity of New York State Commission for the Blind (NYSCB) Comprehensive Service Contractors.

  • API

    Assembled Workers' Compensation Claims: Beginning 2000

    data.ny.gov | Last Updated 2019-09-26T23:26:22.000Z

    The Workers’ Compensation Board (WCB) administers and regulates workers’ compensation benefits, disability benefits, volunteer firefighters’ benefits, volunteer ambulance workers’ benefits, and volunteer civil defense workers’ benefits. The WCB processes and adjudicates claims for benefits; ensures employer compliance with the requirement to maintain appropriate insurance coverage; and regulates the various system stakeholders, including self-insured employers, medical providers, third party administrators, insurance carriers and legal representatives. Claim assembly occurs when the WCB learns of a workplace injury and assigns the claim a WCB claim number. The WCB “assembles” a claim in which an injured worker has lost more than one week of work, has a serious injury that may result in a permanent disability, is disputed by the carrier or employer, or receives a claim form from the injured worker (Form C-3). A reopened claim is one that has been reactivated to resolve new issues following a finding that no further action was necessary

  • API

    Vital Signs: Jobs by Wage Level - Metro (Updated January 2019)

    data.bayareametro.gov | Last Updated 2019-01-18T18:04:50.000Z

    VITAL SIGNS INDICATOR Jobs by Wage Level (EQ1) FULL MEASURE NAME Distribution of jobs by low-, middle-, and high-wage occupations LAST UPDATED January 2019 DESCRIPTION Jobs by wage level refers to the distribution of jobs by low-, middle- and high-wage occupations. In the San Francisco Bay Area, low-wage occupations have a median hourly wage of less than 80% of the regional median wage; median wages for middle-wage occupations range from 80% to 120% of the regional median wage, and high-wage occupations have a median hourly wage above 120% of the regional median wage. DATA SOURCE California Employment Development Department OES (2001-2017) http://www.labormarketinfo.edd.ca.gov/data/oes-employment-and-wages.html American Community Survey (2001-2017) http://api.census.gov CONTACT INFORMATION vitalsigns.info@bayareametro.gov METHODOLOGY NOTES (across all datasets for this indicator) Jobs are determined to be low-, middle-, or high-wage based on the median hourly wage of their occupational classification in the most recent year. Low-wage jobs are those that pay below 80% of the regional median wage. Middle-wage jobs are those that pay between 80% and 120% of the regional median wage. High-wage jobs are those that pay above 120% of the regional median wage. Regional median hourly wages are estimated from the American Community Survey and are published on the Vital Signs Income indicator page. For the national context analysis, occupation wage classifications are unique to each metro area. A low-wage job in New York, for instance, may be a middle-wage job in Miami. For the Bay Area in 2017, the median hourly wage for low-wage occupations was less than $20.86 per hour. For middle-wage jobs, the median ranged from $20.86 to $31.30 per hour; and for high-wage jobs, the median wage was above $31.30 per hour. Occupational employment and wage information comes from the Occupational Employment Statistics (OES) program. Regional and subregional data is published by the California Employment Development Department. Metro data is published by the Bureau of Labor Statistics. The OES program collects data on wage and salary workers in nonfarm establishments to produce employment and wage estimates for some 800 occupations. Data from non-incorporated self-employed persons are not collected, and are not included in these estimates. Wage estimates represent a three-year rolling average. Due to changes in reporting during the analysis period, subregion data from the EDD OES have been aggregated to produce geographies that can be compared over time. West Bay is San Mateo, San Francisco, and Marin counties. North Bay is Sonoma, Solano and Napa counties. East Bay is Alameda and Contra Costa counties. South Bay is Santa Clara County from 2001-2004 and Santa Clara and San Benito counties from 2005-2017. Due to changes in occupation classifications during the analysis period, all occupations have been reassigned to 2010 SOC codes. For pre-2009 reporting years, all employment in occupations that were split into two or more 2010 SOC occupations are assigned to the first 2010 SOC occupation listed in the crosswalk table provided by the Census Bureau. This method assumes these occupations always fall in the same wage category, and sensitivity analysis of this reassignment method shows this is true in most cases. In order to use OES data for time series analysis, several steps were taken to handle missing wage or employment data. For some occupations, such as airline pilots and flight attendants, no wage information was provided and these were removed from the analysis. Other occupations did not record a median hourly wage (mostly due to irregular work hours) but did record an annual average wage. Nearly all these occupations were in education (i.e. teachers). In this case, a 2080 hour-work year was assumed and [annual average wage/2080] was used as a proxy for median income. Most of these occupations were classified as high-wage, thus dispelling c

  • API

    Vital Signs: Jobs by Wage Level - Region (Updated January 2019)

    data.bayareametro.gov | Last Updated 2019-01-18T18:11:50.000Z

    VITAL SIGNS INDICATOR Jobs by Wage Level (EQ1) FULL MEASURE NAME Distribution of jobs by low-, middle-, and high-wage occupations LAST UPDATED January 2019 DESCRIPTION Jobs by wage level refers to the distribution of jobs by low-, middle- and high-wage occupations. In the San Francisco Bay Area, low-wage occupations have a median hourly wage of less than 80% of the regional median wage; median wages for middle-wage occupations range from 80% to 120% of the regional median wage, and high-wage occupations have a median hourly wage above 120% of the regional median wage. DATA SOURCE California Employment Development Department OES (2001-2017) http://www.labormarketinfo.edd.ca.gov/data/oes-employment-and-wages.html American Community Survey (2001-2017) http://api.census.gov CONTACT INFORMATION vitalsigns.info@bayareametro.gov METHODOLOGY NOTES (across all datasets for this indicator) Jobs are determined to be low-, middle-, or high-wage based on the median hourly wage of their occupational classification in the most recent year. Low-wage jobs are those that pay below 80% of the regional median wage. Middle-wage jobs are those that pay between 80% and 120% of the regional median wage. High-wage jobs are those that pay above 120% of the regional median wage. Regional median hourly wages are estimated from the American Community Survey and are published on the Vital Signs Income indicator page. For the national context analysis, occupation wage classifications are unique to each metro area. A low-wage job in New York, for instance, may be a middle-wage job in Miami. For the Bay Area in 2017, the median hourly wage for low-wage occupations was less than $20.86 per hour. For middle-wage jobs, the median ranged from $20.86 to $31.30 per hour; and for high-wage jobs, the median wage was above $31.30 per hour. Occupational employment and wage information comes from the Occupational Employment Statistics (OES) program. Regional and subregional data is published by the California Employment Development Department. Metro data is published by the Bureau of Labor Statistics. The OES program collects data on wage and salary workers in nonfarm establishments to produce employment and wage estimates for some 800 occupations. Data from non-incorporated self-employed persons are not collected, and are not included in these estimates. Wage estimates represent a three-year rolling average. Due to changes in reporting during the analysis period, subregion data from the EDD OES have been aggregated to produce geographies that can be compared over time. West Bay is San Mateo, San Francisco, and Marin counties. North Bay is Sonoma, Solano and Napa counties. East Bay is Alameda and Contra Costa counties. South Bay is Santa Clara County from 2001-2004 and Santa Clara and San Benito counties from 2005-2017. Due to changes in occupation classifications during the analysis period, all occupations have been reassigned to 2010 SOC codes. For pre-2009 reporting years, all employment in occupations that were split into two or more 2010 SOC occupations are assigned to the first 2010 SOC occupation listed in the crosswalk table provided by the Census Bureau. This method assumes these occupations always fall in the same wage category, and sensitivity analysis of this reassignment method shows this is true in most cases. In order to use OES data for time series analysis, several steps were taken to handle missing wage or employment data. For some occupations, such as airline pilots and flight attendants, no wage information was provided and these were removed from the analysis. Other occupations did not record a median hourly wage (mostly due to irregular work hours) but did record an annual average wage. Nearly all these occupations were in education (i.e. teachers). In this case, a 2080 hour-work year was assumed and [annual average wage/2080] was used as a proxy for median income. Most of these occupations were classified as high-wage, thus dispelling c

  • API

    Vital Signs: Jobs by Wage Level - Subregion (Updated January 2019)

    data.bayareametro.gov | Last Updated 2019-01-18T18:06:50.000Z

    VITAL SIGNS INDICATOR Jobs by Wage Level (EQ1) FULL MEASURE NAME Distribution of jobs by low-, middle-, and high-wage occupations LAST UPDATED January 2019 DESCRIPTION Jobs by wage level refers to the distribution of jobs by low-, middle- and high-wage occupations. In the San Francisco Bay Area, low-wage occupations have a median hourly wage of less than 80% of the regional median wage; median wages for middle-wage occupations range from 80% to 120% of the regional median wage, and high-wage occupations have a median hourly wage above 120% of the regional median wage. DATA SOURCE California Employment Development Department OES (2001-2017) http://www.labormarketinfo.edd.ca.gov/data/oes-employment-and-wages.html American Community Survey (2001-2017) http://api.census.gov CONTACT INFORMATION vitalsigns.info@bayareametro.gov METHODOLOGY NOTES (across all datasets for this indicator) Jobs are determined to be low-, middle-, or high-wage based on the median hourly wage of their occupational classification in the most recent year. Low-wage jobs are those that pay below 80% of the regional median wage. Middle-wage jobs are those that pay between 80% and 120% of the regional median wage. High-wage jobs are those that pay above 120% of the regional median wage. Regional median hourly wages are estimated from the American Community Survey and are published on the Vital Signs Income indicator page. For the national context analysis, occupation wage classifications are unique to each metro area. A low-wage job in New York, for instance, may be a middle-wage job in Miami. For the Bay Area in 2017, the median hourly wage for low-wage occupations was less than $20.86 per hour. For middle-wage jobs, the median ranged from $20.86 to $31.30 per hour; and for high-wage jobs, the median wage was above $31.30 per hour. Occupational employment and wage information comes from the Occupational Employment Statistics (OES) program. Regional and subregional data is published by the California Employment Development Department. Metro data is published by the Bureau of Labor Statistics. The OES program collects data on wage and salary workers in nonfarm establishments to produce employment and wage estimates for some 800 occupations. Data from non-incorporated self-employed persons are not collected, and are not included in these estimates. Wage estimates represent a three-year rolling average. Due to changes in reporting during the analysis period, subregion data from the EDD OES have been aggregated to produce geographies that can be compared over time. West Bay is San Mateo, San Francisco, and Marin counties. North Bay is Sonoma, Solano and Napa counties. East Bay is Alameda and Contra Costa counties. South Bay is Santa Clara County from 2001-2004 and Santa Clara and San Benito counties from 2005-2017. Due to changes in occupation classifications during the analysis period, all occupations have been reassigned to 2010 SOC codes. For pre-2009 reporting years, all employment in occupations that were split into two or more 2010 SOC occupations are assigned to the first 2010 SOC occupation listed in the crosswalk table provided by the Census Bureau. This method assumes these occupations always fall in the same wage category, and sensitivity analysis of this reassignment method shows this is true in most cases. In order to use OES data for time series analysis, several steps were taken to handle missing wage or employment data. For some occupations, such as airline pilots and flight attendants, no wage information was provided and these were removed from the analysis. Other occupations did not record a median hourly wage (mostly due to irregular work hours) but did record an annual average wage. Nearly all these occupations were in education (i.e. teachers). In this case, a 2080 hour-work year was assumed and [annual average wage/2080] was used as a proxy for median income. Most of these occupations were classified as high-wage, thus dispelling c