- API
Vital Signs: Street Pavement Condition - by city (Updated October 2019)
data.bayareametro.gov | Last Updated 2019-10-22T16:47:05.000ZVITAL SIGNS INDICATOR Street Pavement Condition (T16) FULL MEASURE NAME Pavement condition index (PCI) LAST UPDATED October 2019 DESCRIPTION Street pavement condition, more commonly referred to as the pavement condition index (PCI), reflects the quality of pavement on local streets and roads in the region. Calculated using a three-year moving average, PCI ranges from zero (failed) to 100 (brand-new) and has been used as a regional indicator of pavement preservation for over a decade. DATA SOURCE Metropolitan Transportation Commission: StreetSaver CONTACT INFORMATION vitalsigns.info@bayareametro.gov METHODOLOGY NOTES (across all datasets for this indicator) Pavement condition index (PCI) relies upon a three-year moving average for regional, county and city PCI to improve the reliability of the PCI data on an annual basis. The index ranges from 0 to 100, with 0 representing a failed road and 100 representing a brand-new facility. Segment PCI data is collected on a rolling basis but is imputed for interim years based on facility age and treatments using the MTC StreetSaver system. Pavement condition data was not collected in 2008. As such, 2007 and 2009 PCI scores were averaged to compute a 2008 estimate for the region, county and city datasets. Due to a lack of reported PCI data for the city of Palo Alto in 2007, an average could not be calculated, so Palo Alto is not included in the Regional Distribution chart.
- API
Vital Signs: Life Expectancy Ten Year Change – by city
data.bayareametro.gov | Last Updated 2018-07-06T18:04:50.000ZVITAL SIGNS INDICATOR Street Pavement Condition (T16) FULL MEASURE NAME Pavement condition index (PCI) LAST UPDATED May 2017 DESCRIPTION Street pavement condition, more commonly referred to as the pavement condition index (PCI), reflects the quality of pavement on local streets and roads in the region. Calculated using a three-year moving average, PCI ranges from zero (failed) to 100 (brand-new) and has been used as a regional indicator of pavement preservation for over a decade. DATA SOURCE Metropolitan Transportation Commission: StreetSaver CONTACT INFORMATION vitalsigns.info@mtc.ca.gov METHODOLOGY NOTES (across all datasets for this indicator) Pavement condition index (PCI) relies upon a three-year moving average for regional, county, and city PCI to improve the reliability of the PCI data on an annual basis. The index ranges from 0 to 100, with 0 representing a failed road and 100 representing a brand-new facility. Segment PCI data is collected on a rolling basis but is imputed for interim years based on facility age and treatments using the MTC StreetSaver system. Due to the lack of reported PCI data in 2006, the city of Palo Alto is not included in the Regional Distribution chart.
- API
Vital Signs: Income (Median by Workplace) – by county
data.bayareametro.gov | Last Updated 2019-08-13T16:17:18.000ZVITAL SIGNS INDICATOR Income (EC5) FULL MEASURE NAME Worker income by workplace (earnings) LAST UPDATED May 2019 DESCRIPTION Income reflects the median earnings of individuals and households from employment, as well as the income distribution by quintile. Income data highlight how employees are being compensated for their work on an inflation-adjusted basis. DATA SOURCE U.S. Census Bureau: Decennial Census Count 4Pb (1970) Form STF3 (1980-1990) Form SF3a (2000) https://nhgis.org U.S. Census Bureau: American Community Survey Form B08521 (2006-2017; place of employment) http://api.census.gov Bureau of Labor Statistics: Consumer Price Index All Urban Consumers Data Table (1970-2017; specific to each metro area) http://data.bls.gov CONTACT INFORMATION Vitalsigns.info@bayareametro.gov METHODOLOGY NOTES (across all datasets for this indicator) Income data reported in a given year reflects the income earned in the prior year (decennial Census) or in the prior 12 months (American Community Survey); note that this inconsistency has a minor effect on historical comparisons (for more information, go to: http://www.census.gov/acs/www/Downloads/methodology/ASA_nelson.pdf). American Community Survey 1-year data is used for larger geographies – metropolitan areas and counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Quintile income for 1970-2000 is imputed from Decennial Census data using methodology from the California Department of Finance (for more information, go to: http://www.dof.ca.gov/Forecasting/Demographics/Census_Data_Center_Network/documents/How_to_Recalculate_a_Median.pdf). Bay Area income is the population weighted average of county-level income. Income has been inflated using the Consumer Price Index specific to each metro area; however, some metro areas lack metro-specific CPI data back to 1970 and therefore adjusted data is unavailable for some historical data points. Note that current MSA boundaries were used for historical comparison by identifying counties included in today’s metro areas.
- API
Vital Signs: Street Pavement Condition - by decade (Updated August 2018)
data.bayareametro.gov | Last Updated 2018-08-21T00:44:35.000ZVITAL SIGNS INDICATOR Street Pavement Condition (T16) FULL MEASURE NAME Pavement condition index (PCI) LAST UPDATED August 2018 DESCRIPTION Street pavement condition, more commonly referred to as the pavement condition index (PCI), reflects the quality of pavement on local streets and roads in the region. Calculated using a three-year moving average, PCI ranges from zero (failed) to 100 (brand-new) and has been used as a regional indicator of pavement preservation for over a decade. DATA SOURCE Metropolitan Transportation Commission: StreetSaver CONTACT INFORMATION vitalsigns.info@bayareametro.gov METHODOLOGY NOTES (across all datasets for this indicator) Pavement condition index (PCI) relies upon a three-year moving average for regional, county, and city PCI to improve the reliability of the PCI data on an annual basis. The index ranges from 0 to 100, with 0 representing a failed road and 100 representing a brand-new facility. Segment PCI data is collected on a rolling basis but is imputed for interim years based on facility age and treatments using the MTC StreetSaver system. Due to the lack of reported PCI data in 2007, the city of Palo Alto is not included in the Regional Distribution chart.
- API
Vital Signs: Vulnerability To Sea Level Rise - Inundation Areas Shapefile (lower resolution)
data.bayareametro.gov | Last Updated 2018-07-06T18:04:14.000ZVITAL SIGNS INDICATOR Vulnerability to Sea Level Rise (EN11) FULL MEASURE NAME Share of population living in zones at risk from various sea level rise forecast scenarios LAST UPDATED July 2017 DESCRIPTION Vulnerability to sea level rise refers to the share of the historical and current Bay Area population located in areas at risk from forecasted sea level rise over the coming decades. Given that there are varying forecasts for the heightened high tides (i.e., mean highest high water mark), projected sea level impacts are presented for six scenarios ranging from a one foot rise to six feet. A neighborhood is considered vulnerable to sea level rise when at least 10 percent of its land area is forecasted to be inundated by peak high tides in the coming years. The dataset includes at-risk population and population share data for the region, counties, and neighborhoods. DATA SOURCE San Francisco Bay Conservation and Development Commission/Metropolitan Transportation Commission ART (Adaption to Rising Tides) Bay Area Sea Level Rise Analysis and Mapping Project (2017) 2017 Sea Level Rise Maps http://www.adaptingtorisingtides.org/project/regional-sea-level-rise-mapping-and-shoreline-analysis/ CONTACT INFORMATION vitalsigns.info@bayareametro.gov METHODOLOGY NOTES (across all datasets for this indicator) Projected areas of inundation were developed by BCDC and NOAA at one-foot intervals ranging from one foot to four feet of sea level rise. Regional and local sea level rise analysis is based on data from BCDC’s ART (Adapting to Rising Tides) Bay Area Sea Level Rise and Mapping Project. This data reflects the most up-to-date and detailed sea level rise mapping for the Bay Area. Sea level rise analysis for metro areas is based on national sea level rise mapping from NOAA, which is best for metro-to-metro comparison. To determine the impacts on historical and current populations, inundation areas were overlaid on a U.S. Census shapefile of 2010 Census tracts using Census Bureau population data. Because census tracts can extend beyond the coastline, the baseline scenario of zero feet was used to determine existing sea level coverage of census tracts. Sea level rise refers to the change from this level. The area of the tract was determined by measuring the component of the tract area not currently under water. This area, rather than the total tract area, was used as the denominator to determine the percentage of the census tract that is inundated under future sea level rise projection scenarios. When at least 10 percent of tract land area is inundated with a given sea level, its residents are considered to be affected by sea level rise. For the purpose of this analysis, SLR scenarios were assumed not to reflect periodic inundation due to extreme weather events, which may lead to an even greater share of residents affected on a less frequent basis. Prior to the impacts from sea level rise, neighborhoods will experience temporary flooding from extreme weather events which can create significant damage to homes and neighborhoods. It should be noted that by directly reviewing maps and tools through the ART (Adapting to Rising Tides) program, regular inundation sea level rise and temporary flooding from extreme weather events are both available. More information on this approach is available here: http://www.adaptingtorisingtides.org/project/regional-sea-level-rise-mapping-and-shoreline-analysis/ Sea level rise analysis for metro areas reflects local, as opposed to global, sea level rise. Recent data has shown sea level is rising faster in the southeast region of the United States. Regional differences in the rate of sea level rise. More information and data related to the rate of sea level rise for different coastal regions is available here: https://oceanservice.noaa.gov/facts/sealevel-global-local.html
- API
Vital Signs: Housing Production – by county (updated November 2019)
data.bayareametro.gov | Last Updated 2019-11-25T18:02:56.000ZVITAL SIGNS INDICATOR Housing Production (LU4) FULL MEASURE NAME Produced housing units by unit type LAST UPDATED October 2019 DESCRIPTION Housing production is measured in terms of the number of units that local jurisdictions produces throughout a given year. The annual production count captures housing units added by new construction and annexations, subtracts demolitions and destruction from natural disasters, and adjusts for units lost or gained by conversions. DATA SOURCE California Department of Finance Form E-8 1990-2010 http://www.dof.ca.gov/Forecasting/Demographics/Estimates/E-8/ California Department of Finance Form E-5 2011-2018 http://www.dof.ca.gov/Forecasting/Demographics/Estimates/E-5/ U.S. Census Bureau Population Estimates 2000-2018 https://www.census.gov/programs-surveys/popest.html CONTACT INFORMATION vitalsigns.info@bayareametro.gov METHODOLOGY NOTES (across all datasets for this indicator) Single-family housing units include single detached units and single attached units. Multi-family housing includes two to four units and five plus or apartment units. Housing production data for metropolitan areas for each year is the difference of annual housing unit estimates from the Census Bureau’s Population Estimates Program. Housing production data for the region, counties, and cities for each year is the difference of annual housing unit estimates from the California Department of Finance. Department of Finance data uses an annual cycle between January 1 and December 31, whereas U.S. Census Bureau data uses an annual cycle from April 1 to March 31 of the following year. Housing production data shows how many housing units have been produced over time. Like housing permit statistics, housing production numbers are an indicator of where the region is growing. However, since permitted units are sometimes not constructed or there can be a long lag time between permit approval and the start of construction, production data also reflects the effects of barriers to housing production. These range from a lack of builder confidence to high construction costs and limited financing. Data also differentiates the trends in multi-family, single-family and mobile home production.
- API
Vital Signs: Greenfield Development – Bay Area (updated November 2019)
data.bayareametro.gov | Last Updated 2019-11-15T22:38:10.000ZVITAL SIGNS INDICATOR Greenfield Development (LU5) FULL MEASURE NAME The acres of construction on previously undeveloped land LAST UPDATED November 2019 DESCRIPTION Greenfield development refers to construction on previously undeveloped land and the corresponding expansion of our region’s developed footprint, which includes the extent of urban and built-up lands. The footprint is defined as land occupied by structures, with a building density of at least 1 unit to 1.5 acres. DATA SOURCE Department of Conservation: Farmland Mapping and Monitoring Program GIS Data Tables/Layers (1990-2016) https://www.conservation.ca.gov/dlrp/fmmp U.S. Census Bureau: Decennial Census Population by Census Block Group (2000-2010) http://factfinder.census.gov U.S. Census Bureau: American Community Survey (5-year) Population by Census Block Group (2000-2017) http://factfinder.census.gov METHODOLOGY NOTES (across all datasets for this indicator) For regional and local data, FMMP maps the extent of “urban and built-up” lands, which generally reflect the developed urban footprint of the region. The footprint is defined as land occupied by structures with building density of at least 1 unit to 1.5 acres. Uses include residential, industrial, commercial, construction, institutional, public administration, railroad and other transportation yards, cemeteries, airports, golf courses, sanitary landfills, sewage treatment, water control structures, and other developed purposes. To determine the amount of greenfield development (in acres) occurring in a given two-year period, the differences in urban footprint are computed on a county-level. FMMP makes slight refinements to urban boundaries over time, so changes in urban footprint +/- 100 acres are not regionally significant. The GIS shapefile represents the 2014 urban footprint and thus does not show previously urbanized land outside of the footprint (i.e. Hamilton Air Force Base). For metro comparisons, a different methodology had to be used to avoid the geospatial limitations associated with FMMP. U.S. Census population by census block group was gathered for each metro area for 2000, 2010, and 2015. Population data for years 2000 and 2010 come from the Decennial Census while data for 2015 comes from the 2015 5-year American Community Survey. The block group was considered urbanized if its average/gross density was greater than 1 housing unit per acre (a slightly higher threshold than FMMP uses for its definition). Because a block group cannot be flagged as partially urbanized, and non-residential uses are not fully captured, the urban footprint of the region calculated with this methodology is smaller than in FMMP. The metro data should be primarily used for looking at comparative growth rate in greenfield development rather than the acreage totals themselves.
- API
Vital Signs: List Rents – by metro
data.bayareametro.gov | Last Updated 2018-07-06T18:06:30.000ZVITAL SIGNS INDICATOR List Rents (EC9) FULL MEASURE NAME List Rents LAST UPDATED October 2016 DESCRIPTION List rent refers to the advertised rents for available rental housing and serves as a measure of housing costs for new households moving into a neighborhood, city, county or region. DATA SOURCE real Answers (1994 – 2015) no link Zillow Metro Median Listing Price All Homes (2010-2016) http://www.zillow.com/research/data/ CONTACT INFORMATION vitalsigns.info@mtc.ca.gov METHODOLOGY NOTES (across all datasets for this indicator) List rents data reflects median rent prices advertised for available apartments rather than median rent payments; more information is available in the indicator definition above. Regional and local geographies rely on data collected by real Answers, a research organization and database publisher specializing in the multifamily housing market. real Answers focuses on collecting longitudinal data for individual rental properties through quarterly surveys. For the Bay Area, their database is comprised of properties with 40 to 3,000+ housing units. Median list prices most likely have an upward bias due to the exclusion of smaller properties. The bias may be most extreme in geographies where large rental properties represent a small portion of the overall rental market. A map of the individual properties surveyed is included in the Local Focus section. Individual properties surveyed provided lower- and upper-bound ranges for the various types of housing available (studio, 1 bedroom, 2 bedroom, etc.). Median lower- and upper-bound prices are determined across all housing types for the regional and county geographies. The median list price represented in Vital Signs is the average of the median lower- and upper-bound prices for the region and counties. Median upper-bound prices are determined across all housing types for the city geographies. The median list price represented in Vital Signs is the median upper-bound price for cities. For simplicity, only the mean list rent is displayed for the individual properties. The metro areas geography rely upon Zillow data, which is the median price for rentals listed through www.zillow.com during the month. Like the real Answers data, Zillow's median list prices most likely have an upward bias since small properties are underrepresented in Zillow's listings. The metro area data for the Bay Area cannot be compared to the regional Bay Area data. Due to afore mentioned data limitations, this data is suitable for analyzing the change in list rents over time but not necessarily comparisons of absolute list rents. Metro area boundaries reflects today’s metro area definitions by county for consistency, rather than historical metro area boundaries. Due to the limited number of rental properties surveyed, city-level data is unavailable for Atherton, Belvedere, Brisbane, Calistoga, Clayton, Cloverdale, Cotati, Fairfax, Half Moon Bay, Healdsburg, Hillsborough, Los Altos Hills, Monte Sereno, Moranga, Oakley, Orinda, Portola Valley, Rio Vista, Ross, San Anselmo, San Carlos, Saratoga, Sebastopol, Windsor, Woodside, and Yountville. Inflation-adjusted data are presented to illustrate how rents have grown relative to overall price increases; that said, the use of the Consumer Price Index does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of CPI itself. Percent change in inflation-adjusted median is calculated with respect to the median price from the fourth quarter or December of the base year.
- API
Vital Signs: Change in Jobs by Industry – by county
data.bayareametro.gov | Last Updated 2019-08-13T16:20:02.000ZVITAL SIGNS INDICATOR Change in Jobs by Industry (EC2) FULL MEASURE NAME Employment by place of work by industry sector LAST UPDATED May 2019 DESCRIPTION Change in jobs by industry is the percent change and absolute difference in the number of people who have jobs within a certain industry type in a given geographical area DATA SOURCE California Employment Development Department: Current Employment Statistics 1990-2017 http://www.labormarketinfo.edd.ca.gov/ CONTACT INFORMATION vitalsigns.info@bayareametro.gov METHODOLOGY NOTES (across all datasets for this indicator) The California Employment Development Department (EDD) provides estimates of employment by place of work and by industry. Industries are classified by their North American Industry Classification System (NAICS) code. Vital Signs aggregates employment into 11 industry sectors: Farm, Mining, Logging and Construction, Manufacturing, Trade, Transportation and Utilities, Information, Financial Activities, Professional and Business Services, Educational and Health Services, Leisure and Hospitality, Government, and Other. EDD counts all public-sector jobs under Government, including public transportation, public schools, and public hospitals. The Other category includes service jobs such as auto repair and hair salons and organizations such as churches and social advocacy groups. Employment in the technology sector are classified under three categories: Professional and Business Services, Information, and Manufacturing. The latter category includes electronic and computer manufacturing. For further details of typical firms found in each sector, refer to the 2012 NAICS Manual (http://www.census.gov/cgi-bin/sssd/naics/naicsrch?chart=2012). The Bureau of Labor Statistics (BLS) provides industry estimates for non-Bay Area metro areas. Their main industry employment estimates, the Current Employment Survey and Quarterly Census of Employment and Wages, do not provide annual estimates of farm employment. To be consistent, the metro comparison evaluates nonfarm employment for all metro areas, including the Bay Area. Industry shares are thus slightly different for the Bay Area between the historical trend and metro comparison sections. The location quotient (LQ) is used to evaluate level of concentration or clustering of an industry within the Bay Area and within each county of the region. A location quotient greater than 1 means there is a strong concentration for of jobs in an industry sector. For the Bay Area, the LQ is calculated as the share of the region’s employment in a particular sector divided by the share of the nation’s employment in that same sector. Because BLS does not provide national farm estimates, note that there is no LQ for regional farm employment. For each county, the LQ is calculated as the share of the county’s employment in a particular sector divided by the share of the region’s employment in that same sector.
- API
Vital Signs: Jobs by Industry (Location Quotient) – Bay Area
data.bayareametro.gov | Last Updated 2019-08-13T16:20:18.000ZVITAL SIGNS INDICATOR Jobs by Industry (EC1) FULL MEASURE NAME Employment by place of work by industry sector LAST UPDATED July 2019 DESCRIPTION Jobs by industry refers to both the change in employment levels by industry and the proportional mix of jobs by economic sector. This measure reflects the changing industry trends that affect our region’s workers. DATA SOURCE Bureau of Labor Statistics: Current Employment Statistics 1990-2017 http://data.bls.gov CONTACT INFORMATION vitalsigns.info@bayareametro.gov METHODOLOGY NOTES (across all datasets for this indicator) The California Employment Development Department (EDD) provides estimates of employment by place of work and by industry. Industries are classified by their North American Industry Classification System (NAICS) code. Vital Signs aggregates employment into 11 industry sectors: Farm, Mining, Logging and Construction, Manufacturing, Trade, Transportation and Utilities, Information, Financial Activities, Professional and Business Services, Educational and Health Services, Leisure and Hospitality, Government, and Other. EDD counts all public-sector jobs under Government, including public transportation, public schools, and public hospitals. The Other category includes service jobs such as auto repair and hair salons and organizations such as churches and social advocacy groups. Employment in the technology sector are classified under three categories: Professional and Business Services, Information, and Manufacturing. The latter category includes electronic and computer manufacturing. For further details of typical firms found in each sector, refer to the 2012 NAICS Manual (http://www.census.gov/cgi-bin/sssd/naics/naicsrch?chart=2012). The Bureau of Labor Statistics (BLS) provides industry estimates for non-Bay Area metro areas. Their main industry employment estimates, the Current Employment Survey and Quarterly Census of Employment and Wages, do not provide annual estimates of farm employment. To be consistent, the metro comparison evaluates nonfarm employment for all metro areas, including the Bay Area. Industry shares are thus slightly different for the Bay Area between the historical trend and metro comparison sections. The location quotient (LQ) is used to evaluate level of concentration or clustering of an industry within the Bay Area and within each county of the region. A location quotient greater than 1 means there is a strong concentration for of jobs in an industry sector. For the Bay Area, the LQ is calculated as the share of the region’s employment in a particular sector divided by the share of the nation’s employment in that same sector. Because BLS does not provide national farm estimates, note that there is no LQ for regional farm employment. For each county, the LQ is calculated as the share of the county’s employment in a particular sector divided by the share of the region’s employment in that same sector.